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1 Density Functional Theory modeling for chemistry, materials
science and molecular biology

Classical Molecular Dynamics (MD) simulations rely on parameterized potentials that directly
describe interactions between atoms without calculating the electronic structure. Billions of atoms
can be modeled with MD. However, classical MD is not applicable in many physical situations
where classical potentials fail or are not even available, e.g., for various conditions of pressure and
temperature or in situations when bonds breaking/making occurs. Thus, simulating matter at
the atomistic level often requires the much more computationally demanding calculation of the
electronic structure — quantum electrons — to build realistic models.

First-Principles Molecular Dynamics (FPMD) is a very general and fundamental predictive
tool to study matter at the atomistic scale. It includes calculating the electronic structure and
the actual potential describing the “glue” tying atoms together. FPMD typically uses the Born-
Oppenheimer approximation (classical ions surrounded by quantum electrons) and requires solving
the equations of Density Functional Theory (DFT), the Kohn-Sham (KS) equations to model the
quantum electronic wave functions (see e.g. [3]). The high computational cost of PFMD currently
limits practical simulations of interest to application scientists to O(500) atoms.

2 Computational challenges of quantum models on large scale
parallel computers

Unlike classical physics problem where the number of variables (such as temperature, pressure,
etc.) is fixed and does not grow with the system size, quantum mechanics models have a number of
fields — electronic wave functions — proportional to the system size. This leads to O(N2) degrees
of freedom to represent O(N) electronic wave functions for a problem composed of N atoms and
to O(N3) operations for standard solvers (eigensolvers).

The present practical FPMD computational limit is around 500 atoms, that is a 3D cell of
about 8× 8× 8 atoms. This is not enough to go much beyond simple atomic geometries involving
single atomic species or very small molecules. Many problems need to be simplified to be tractable,
and side effects of such simplifications can be quite damaging. With a thousand-fold increase in
computer power and the same wall clock time requirements, an O(N3) algorithm would allow one
to handle a system with no more than about 5000 atoms, that is a 3D cell of about 17 × 17 × 17
only. To make the matters worse, many O(N3) algorithms are poorly scalable and communication
hungry, demanding for high data throughput, on parallel computers.
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Advanced O(N3) algorithms have been developed to distribute computational work efficiently
on large parallel computers using hybrid distributions — each processor is responsible for a fraction
of the coefficients describing a fraction of the electronic wave functions (see [5]). Pushing such a
strategy on today largest computers enable very large calculations (100,000 atoms in Ref. [6]),
but with a time to solution far too long to be useful for any real application of interest to domain
scientists.

3 Requirement for exascale algorithms: O(N) complexity, short-
range communications and accuracy

To make an efficient use of tomorrow’s largest exascale computers, algorithms with O(N) com-
plexity and short-range communications are needed, so that one can simulate a number of atoms
directly proportional to the number of processors available, for hundreds of thousands of atoms
using hundreds of thousands of processors.

A lot of research has been carried out in the last 20 year in the physics and chemistry com-
munities in an effort to develop O(N) algorithms for electronic structure calculations (see [2] for
a recent review). Fewer researchers in the applied mathematics community have been working on
this topic. A recent exception is the work of Benzi et al. [1], but more involvement by the applied
mathematics community in this field could help at various levels, such as error estimations and
solvers for instance.

Most O(N) algorithms introduce some approximations or truncations of terms to reduce com-
putational complexity. It thus becomes important to evaluate and control the accuracy of the
resulting algorithms [4]. A sufficient level accuracy often means that these O(N) algorithms
become competitive only at large scale (more than 500 atoms).

But O(N) complexity is not enough if one hopes to make an efficient use of exascale computers.
Optimal algorithms also need to avoid global communications. One category of O(N) algorithms
with such a property is the so-called “Divide and Conquer” [7]. In this type of algorithm, the
global problem is divided in sub-problems that are each solved independently, with a buffer region
around the sub-domain associated with the sub-problem. The solutions of those independent sub-
problems are then put together to build the global solution in an iterative manner. Dividing a
problem into sub-problems can however be quite tricky and can lead to hard-to-quantify errors
and hard-to-solve (unphysical) sub-problems. Other O(N) algorithms are typically difficult to
scale beyond a few thousand processors.

Note that in FPMD simulations, the electronic wave functions are just an intermediate quantity
needed to calculate accurate forces acting on atoms and propagate these atoms according to
Newton’s equation. There is the possibility of developing algorithms robust to soft errors to
compute those wave functions, adapting typically used iterative solvers. Atomic positions and
velocities on the other hand are likely to be quantities we want to protect from any soft errors.
But since since they constitute only a very small fraction of the data, it would be easy to replicate
their values.

Finally, existing O(N) algorithms work for systems with a finite band gap (insulators and semi-
conductors) for which various mathematical properties of the solution can be exploited to reduce
complexity. Tackling the very important category of metallic systems is much more challenging.
In general, more research is needed to solidify existing O(N) algorithms and turn them into reli-
able tools to use on future large parallel computers. In addition, new algorithm developments are
needed to satisfy all the requirements of scalability and accuracy and to enable materials scientists,
chemists and molecular biologist to take advantage of future exascale computers.
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